哈诺塔问题相信只要学习计算机的人都知道。这是一个古老而又伟大的问题。在这篇文章中,主要是给出递归解决汉诺塔问题的代码方法。毕竟面试的时候,HR比我们要变态很多,怎么蹂躏我们怎么玩。
一、什么是汉诺塔问题
这个问题来源于印度。有三个金刚石塔,第一个从小到大摞着64片*金圆盘。现在把圆盘按大小顺序重新摆放在最后一个塔上。并且规定,在小圆盘上不能放大圆盘,在三个塔之间一次只能移动一个圆盘。
也就是说将from上的圆盘全部移动到to上,并且要保证小圆盘始终在大圆盘上。
如何来求解呢?很明显这道题大家都知道使用递归的方式来做。不过如何去考虑递归呢?
在这里我想说一下我个人目前关于递归的理解。递归其实就是一个方程式:f(n)=f(n-1)+a;也就是说在设计递归的时候应该考虑下面三个方面:
(1)求解f(n)的时候,假设f(n-1)已经求解出来了。我们不要去考虑f(n-1)是如何求解出来的。
(2)关键点在于递归的结束条件。
(3)递归往往和分治法是分不开的。对于复杂的递归,往往将递归拆分。然后再合并
整体的递归方法流程是这样的。首先我们要写一个递归方法。
(1)首先判断递归结束时候的操作
(2)递归分解
而本题的汉诺塔就是使用典型的递归思想。首先我们求解f(n)
①将n-1个圆盘从from-buffer
②将1个圆盘从from-to
③将n-1个圆盘从buffer-to
④以上三步都是为了求解f(n),最后我们给出递归结束的条件。只有一个圆盘的时候,只需一次移动操作即可。
二、代码实现