先说一下,文章很长很长,10万字长文,建议先收藏再观看!
一.鸿蒙OS整体介绍
首先,我们来看一下官方对HarmonyOS的定义。根据官方的定义,HarmonyOS是一款“面向未来”、面向全场景(移动办公、运动健康、社交通信、媒体娱乐等)的分布式操作系统。在传统的单设备系统能力的基础上,HarmonyOS提出了基于同一套系统能力、适配多种终端形态的分布式理念,能够支持多种终端设备的能力。
对消费者而言,HarmonyOS能够将生活场景中的各类终端进行能力整合,形成一个“超级虚拟终端”,可以实现不同的终端设备之间的快速连接、能力互助、资源共享,匹配合适的设备、提供流畅的全场景体验。
对应用开发者而言,HarmonyOS采用了多种分布式技术,使得应用程序的开发实现与不同终端设备的形态差异无关,降低了开发难度和成本。这能够让开发者聚焦上层业务逻辑,更加便捷、高效地开发应用。
对设备开发者而言,HarmonyOS采用了组件化的设计方案,可以根据设备的资源能力和业务特征进行灵活裁剪,满足不同形态的终端设备对于操作系统的要求。
技术特性
硬件互助,资源共享
1,分布式软总线
分布式软总线是多种终端设备的统一基座,为设备之间的互联互通提供了统一的分布式通信能力,能够快速发现并连接设备,高效地分发任务和传输数据,分布式软总线示意图如下图所示。
2,分布式设备虚拟化
分布式设备虚拟化平台可以实现不同设备的资源融合、设备管理、数据处理,多种设备共同形成一个超级虚拟终端。针对不同类型的任务,为用户匹配并选择能力合适的执行硬件,让业务连续地在不同设备间流转,充分发挥不同设备的资源优势,分布式设备虚拟化示意图如下图所示。
,分布式数据管理
分布式数据管理基于分布式软总线的能力,实现应用程序数据和用户数据的分布式管理。用户数据不再与单一物理设备绑定,业务逻辑与数据存储分离,应用跨设备运行时数据无缝衔接,为打造一致、流畅的用户体验创造了基础条件。分布式数据管理示意图如下图所示。
4,分布式任务调度
分布式任务调度基于分布式软总线、分布式数据管理、分布式Profile等技术特性,构建统一的分布式服务管理(发现、同步、注册、调用)机制,支持对跨设备的应用进行远程启动、远程调用、远程连接以及迁移等操作,能够根据不同设备的能力、位置、业务运行状态、资源使用情况,以及用户的习惯和意图,选择合适的设备运行分布式任务。以下图的应用迁移为例,简要地展示了分布式任务调度能力。
一次开发,多端部署
HarmonyOS提供了用户程序框架、Ability框架以及UI框架,支持应用开发过程中多终端的业务逻辑和界面逻辑进行复用,能够实现应用的一次开发、多端部署,提升了跨设备应用的开发效率。一次开发、多端部署示意图如下图所示。
统一OS,弹性部署
HarmonyOS通过组件化和小型化等设计方法,支持多种终端设备按需弹性部署,能够适配不同类别的硬件资源和功能需求。支撑通过编译链关系去自动生成组件化的依赖关系,形成组件树依赖图,支撑产品系统的便捷开发,降低硬件设备的开发门槛。
支持各组件的选择(组件可有可无):根据硬件的形态和需求,可以选择所需的组件。
支持组件内功能集的配置(组件可大可小):根据硬件的资源情况和功能需求,可以选择配置组件中的功能集。例如,选择配置图形框架组件中的部分控件。
支持组件间依赖的关联(平台可大可小):根据编译链关系,可以自动生成组件化的依赖关系。例如,选择图形框架组件,将会自动选择依赖的图形引擎组件等。
技术架构
HarmonyOS整体遵从分层设计,从下向上依次为:内核层、系统服务层、框架层和应用层。系统功能按照“系统子系统功能/模块”逐级展开,在多设备部署场景下,支持根据实际需求裁剪某些非必要的子系统或功能/模块。HarmonyOS技术架构如下图所示。
内核层
HarmonyOS系统分为内核子系统和驱动子系统。
内核子系统:HarmonyOS采用多内核设计,支持针对不同资源受限设备选用适合的OS内核。内核抽象层(KAL,KernelAbstractLayer)通过屏蔽多内核差异,对上层提供基础的内核能力,包括进程/线程管理、内存管理、文件系统、网络管理和外设管理等。
驱动子系统:HarmonyOS驱动框架(HDF)是HarmonyOS硬件生态开放的基础,提供统一外设访问能力和驱动开发、管理框架。
系统服务层
系统服务层是HarmonyOS的核心能力集合,通过框架层对应用程序提供服务。该层包含以下几个部分:
系统基本能力子系统集:为分布式应用在HarmonyOS多设备上的运行、调度、迁移等操作提供了基础能力,由分布式软总线、分布式数据管理、分布式任务调度、方舟多语言运行时、公共基础库、多模输入、图形、安全、AI等子系统组成。其中,方舟运行时提供了C/C++/JS多语言运行时和基础的系统类库,也为使用方舟编译器静态化的Java程序(即应用程序或框架层中使用Java语言开发的部分)提供运行时。
基础软件服务子系统集:为HarmonyOS提供公共的、通用的软件服务,由事件通知、电话、多媒体、DFX、MSDPDV等子系统组成。
增强软件服务子系统集:为HarmonyOS提供针对不同设备的、差异化的能力增强型软件服务,由智慧屏专有业务、穿戴专有业务、IoT专有业务等子系统组成。
硬件服务子系统集:为HarmonyOS提供硬件服务,由位置服务、生物特征识别、穿戴专有硬件服务、IoT专有硬件服务等子系统组成。
根据不同设备形态的部署环境,基础软件服务子系统集、增强软件服务子系统集、硬件服务子系统集内部可以按子系统粒度裁剪,每个子系统内部又可以按功能粒度裁剪。
框架层
框架层为HarmonyOS的应用程序提供了Java/C/C++/JS等多语言的用户程序框架和Ability框架,以及各种软硬件服务对外开放的多语言框架API;同时为采用HarmonyOS的设备提供了C/C++/JS等多语言的框架API,不同设备支持的API与系统的组件化裁剪程度相关。
应用层
应用层包括系统应用和第三方非系统应用。HarmonyOS的应用由一个或多个FA(FeatureAbility)或PA(ParticleAbility)组成。其中,FA有UI界面,提供与用户交互的能力;而PA无UI界面,提供后台运行任务的能力以及统一的数据访问抽象。基于FA/PA开发的应用,能够实现特定的业务功能,支持跨设备调度与分发,为用户提供一致、高效的应用体验。
系统安全
在搭载HarmonyOS的分布式终端上,可以保证“正确的人,通过正确的设备,正确地使用数据”。
通过“分布式多端协同身份认证”来保证“正确的人”。
通过“在分布式终端上构筑可信运行环境”来保证“正确的设备”。
通过“分布式数据在跨终端流动的过程中,对数据进行分类分级管理”来保证“正确地使用数据”。
正确的设备
在分布式终端场景下,只有保证用户使用的设备是安全可靠的,才能保证用户数据在虚拟终端上得到有效保护,避免用户隐私泄露。
安全启动确保源头每个虚拟设备运行的系统固件和应用程序是完整的、未经篡改的。通过安全启动,各个设备厂商的镜像包就不易被非法替换为恶意程序,从而保护用户的数据和隐私安全。
可信执行环境提供了基于硬件的可信执行环境(TEE,TrustedExecutionEnvironment)来保护用户的个人敏感数据的存储和处理,确保数据不泄露。由于分布式终端硬件的安全能力不同,对于用户的敏感个人数据,需要使用高安全等级的设备进行存储和处理。HarmonyOS使用基于数学可证明的形式化开发和验证的TEE微内核,获得了商用OS内核CCEAL5+的认证评级。
设备证书认证支持为具备可信执行环境的设备预置设备证书,用于向其他虚拟终端证明自己的安全能力。对于有TEE环境的设备,通过预置PKI(PublicKeyInfrastructure)设备证书给设备身份提供证明,确保设备是合法制造生产的。设备证书在产线进行预置,设备证书的私钥写入并安全保存在设备的TEE环境中,且只在TEE内进行使用。在必须传输用户的敏感数据(例如密钥、加密的生物特征等信息)时,会在使用设备证书进行安全环境验证后,建立从一个设备的TEE到另一设备的TEE之间的安全通道,实现安全传输,如下图所示。
正确地使用数据
在分布式终端场景下,需要确保用户能够正确地使用数据。HarmonyOS围绕数据的生成、存储、使用、传输以及销毁过程进行全生命周期的保护,从而保证个人数据与隐私、以及系统的机密数据(如密钥)不泄漏。
数据生成:根据数据所在的国家或组织的法律法规与标准规范,对数据进行分类分级,并且根据分类设置相应的保护等级。每个保护等级的数据从生成开始,在其存储、使用、传输的整个生命周期都需要根据对应的安全策略提供不同强度的安全防护。虚拟超级终端的访问控制系统支持依据标签的访问控制策略,保证数据只能在可以提供足够安全防护的虚拟终端之间存储、使用和传输。数据存储:HarmonyOS通过区分数据的安全等级,存储到不同安全防护能力的分区,对数据进行安全保护,并提供密钥全生命周期的跨设备无缝流动和跨设备密钥访问控制能力,支撑分布式身份认证协同、分布式数据共享等业务。数据使用:HarmonyOS通过硬件为设备提供可信执行环境。用户的个人敏感数据仅在分布式虚拟终端的可信执行环境中进行使用,确保用户数据的安全和隐私不泄露。数据传输:为了保证数据在虚拟超级终端之间安全流转,需要各设备是正确可信的,建立了信任关系(多个设备通过华为帐号建立配对关系),并能够在验证信任关系后,建立安全的连接通道,按照数据流动的规则,安全地传输数据。当设备之间进行通信时,需要基于设备的身份凭据对设备进行身份认证,并在此基础上,建立安全的加密传输通道。数据销毁:销毁密钥即销毁数据。数据在虚拟终端的存储,都建立在密钥的基础上。当销毁数据时,只需要销毁对应的密钥即完成了数据的销毁。
二.子系统架构
三.关键技术
华为鸿蒙OS的四大技术特性
鸿蒙OS的设计初衷是为满足全场景智慧体验的高标准的连接要求,为此华为提出了4大特性的系统解决方案。
分布式架构首次用于终端OS,实现跨终端无缝协同体验
鸿蒙OS的“分布式OS架构”和“分布式软总线技术”通过公共通信平台,分布式数据管理,分布式能力调度和虚拟外设四大能力,将相应分布式应用的底层技术实现难度对应用开发者屏蔽,使开发者能够聚焦自身业务逻辑,像开发同一终端一样开发跨终端分布式应用,也使最终消费者享受到强大的跨终端业务协同能力为各使用场景带来的无缝体验。
确定时延引擎和高性能IPC技术实现系统天生流畅
鸿蒙OS通过使用确定时延引擎和高性能IPC两大技术解决现有系统性能不足的问题。确定时延引擎可在任务执行前分配系统中任务执行优先级及时限进行调度处理,优先级高的任务资源将优先保障调度,应用响应时延降低25.7%。鸿蒙微内核结构小巧的特性使IPC(进程间通信)性能大大提高,进程通信效率较现有系统提升5倍。
基于微内核架构重塑终端设备可信安全
鸿蒙OS采用全新的微内核设计,拥有更强的安全特性和低时延等特点。微内核设计的基本思想是简化内核功能,在内核之外的用户态尽可能多地实现系统服务,同时加入相互之间的安全保护。微内核只提供最基础的服务,比如多进程调度和多进程通信等。
鸿蒙OS将微内核技术应用于可信执行环境(TEE),通过形式化方法,重塑可信安全。形式化方法是利用数学方法,从源头验证系统正确,无漏洞的有效手段。传统验证方法如功能验证,模拟攻击等只能在选择的有限场景进行验证,而形式化方法可通过数据模型验证所有软件运行路径。鸿蒙OS首次将形式化方法用于终端TEE,显著提升安全等级。同时由于鸿蒙OS微内核的代码量只有Linux宏内核的千分之一,其受攻击几率也大幅降低。
通过统一IDE支撑一次开发,多端部署,实现跨终端生态共享
鸿蒙OS凭借多终端开发IDE,多语言统一编译,分布式架构Kit提供屏幕布局控件以及交互的自动适配,支持控件拖拽,面向预览的可视化编程,从而使开发者可以基于同一工程高效构建多端自动运行App,实现真正的一次开发,多端部署,在跨设备之间实现共享生态。华为方舟编译器是首个取代Android虚拟机模式的静态编译器,可供开发者在开发环境中一次性将高级语言编译为机器码。此外,方舟编译器未来将支持多语言统一编译,可大幅提高开发效率。
四.参考资料
通过以下材料可进一步了解:
1)微内核和宏内核的差异,为什么鸿蒙选择微内核;
2)方舟编译器的原理和作用,已经它所解决的核心技术问题。
HarmonyOS鸿蒙操作系统的研发历程:微内核、方舟编译器、IOT生态等
七年沉淀,发力“鸿蒙”
1、ICT领域之“大脑”,得系统者得天下
2、早期鸿蒙雏形LiteOS就已体现华为发力IoT
两大核心要素:微内核、方舟编译器
1、鸿蒙微内核从底层即为物联网设计
2、方舟编译器是鸿蒙的取胜关键
5G+IoT时代的苹果
鸿蒙将完善华为IoT生态,催化产业进程
七年沉淀,发力“鸿蒙”
1、ICT领域之“大脑”,得系统者得天下
操作系统(OS,OperatingSystem)是管理计算机软硬件资源的“大脑”。常见ICT系统包括硬件和软件两部分,软件又可分为操作系统软件和应用软件。其中操作系统是介于硬件和应用软件之间的一层重要部分,是管理分配硬件资源、实现应用软件功能的重要载体。
操作系统在ICT领域扮演重要角色,其作用可从技术、生态两方面佐证:
技术角度看,操作系统在程序运行的过程中起重要作用。一般而言,软件程序的运行需要四大要素:程序设计语言、编译系统、操作系统、指令集。粗略理解:1)程序设计语言是编程的工具基础,包括常见的C、C++、Java、C#等;2)编译系统的作用是将编写好的程序语言“翻译”成机器能够识别的二进制码;③操作系统是调度资源、执行程序的“大脑”;④指令集则决定了程序以何种方式来执行。
可作以下类比:硬件相当于高速公路、铁路等基础设施资源,软件相当于驾驶员/旅客,而操作系统则相当于各种类型的交通工具。汽车、火车等交通工具借助公路、铁路等基础设施得以行驶,驾驶员/旅客在交通工具上方能到达不同目的地。操作系统则是向下对接硬件,使硬件资源的存在有实际意义,同时向上承载各类应用程序,得以实现各种应用功能;编译系统在程序运行的过程中,起到方向盘或导航仪的作用,将驾驶员(软件)的操作(程序指令)转化为车辆的位移(机器语言)。
▲操作系统在程序运行的过程中起重要作用
生态角度看,总结Win-tel与我国自主可控历程,操作系统厂商处于ICT产业链的核心环节。Win-tel联盟下,微软股价随Win95、WinXP等版本的发布屡创新高。s微软与英特尔组成Win-tel联盟,使得Windows系统搭配x86的Intel处理器成为PC领域的绝对主流,二者结合后,在软硬件版本迭代、生产、销售等环节协同,一时形成“双寡头垄断”的格局。年Win95的发布首创了“桌面”的概念,使人机交互界面更加友好;WindowsXP的发布进一步稳固了微软在操作系统领域的领先地位。
▲Win-tel发展历程
尽管芯片是ICT生态的底层核心,但Windows背后庞大的应用生态决定了微软对芯片商有较高话语权。微软于年公布Win10操作系统已拥有万个应用、超1.75亿个软件版本,支持万个硬件/驱动组合。微软三十余年积累海量开发者,拥有庞大的应用基础,因此对芯片架构的选择拥有一定话语权。在x86以外微软已针对ARM架构推出新一代操作系统,英特尔以外的芯片商将受益Win生态的拓展。
另外,ICT领域自主可控不仅体现在以芯片为代表的硬件层,更需要操作系统带动生态可持续。“基础软件的短板主要在操作系统,芯片的短板主要在EDA(电子设计自动化)设计工具等领域”。芯片层的创新与投入一直是产业与资本的